Investment Decision Cheatsheet

Jean-Charles Bagneris - v2018.08.1

Time Value of Money	1			
		Compound Interests	Annuities	
	Present Value	$V_0 = \frac{V_n}{(1+r)^n} = V_n \times (1+r)^{-n}$	$V_0 = a \times \frac{(1-(1+r)^{-r})}{r}$	
	Future Value	$V_n = V_0 \times (1+r)^n$	$V_n = a \times \frac{((1+r)^n - 1)}{r}$	
Present value of any financial asset		$P_0 = \sum_{t=1}^n \frac{F_t}{(1+r)^t} = \frac{F_1}{(1+r)} + \frac{F_2}{(1+r)^2} + \dots + \frac{F_n}{(1+r)^n}$		F _n + r) ⁿ

Equity Cost and Value

Gordon Model $P_0 = \frac{Div_1}{(k_E - g)}$ thus cost of equity $k_E = \frac{Div_1}{P_0} + g$ P_0 is stock price hereCAPMCost of equity $k_E = r_f + \beta \times (E(R_m) - r_f)$ $\beta_{UL} = \frac{\beta}{\left[\left(\frac{D \times (1-\tau)}{E}\right) + 1\right]}$

Debt Cost and Value

Bond price
$$P_0$$
 = CouponValue $\times \frac{(1 - (1 + YTM)^{-n})}{YTM} + \frac{\text{Repayment}}{(1 + YTM)^n}$
Cost of debt $k_D = i \times (1 - \tau)$ Note: use $i = YTM$ for k_D calculation

WACC

$$WACC = \left(\frac{D}{(D+E)} \times k_D\right) + \left(\frac{E}{(D+E)} \times k_E\right)$$

Investment decision

Net cash flow:

Investment CF (negative) + Operating CF (EBITDA - Tax - Increase in WCR) + End of project CF (e.g. after tax final value of assets)

$$NPV = \sum_{t=0}^{n} \frac{F_t}{(1 + WACC)^t} = F_0 + \frac{F_1}{(1 + WACC)} + \frac{F_2}{(1 + WACC)^2} + \dots + \frac{F_n}{(1 + WACC)^n}$$

Note: F₀ is usually negative (investment cash outflow + initial WCR outflow)

$V_0 P_0$ Value or price at time 0	k_D Cost of debt (rate in %)	τ Corporate tax rate	
present value	YTM Yield to Maturity (rate in %)	g Compound growth rate %	
$V_t P_t$ Value or price at time t	E Equity market value	$E(R_m)$ Expected market return %	
<i>i r</i> Interest, discount rate or return % $F_t CF_t$ Cash flow at time t	k_F Cost of equity (rate in %)	rf Risk free rate %	
D Debt market value	Div_t Dividend for period t	β_{III} Unlevered beta	
		POL CHICKCHOU DOUL	